国产99久久精品_欧美日本韩国一区二区_激情小说综合网_欧美一级二级视频_午夜av电影_日本久久精品视频

最新文章專題視頻專題問答1問答10問答100問答1000問答2000關鍵字專題1關鍵字專題50關鍵字專題500關鍵字專題1500TAG最新視頻文章推薦1 推薦3 推薦5 推薦7 推薦9 推薦11 推薦13 推薦15 推薦17 推薦19 推薦21 推薦23 推薦25 推薦27 推薦29 推薦31 推薦33 推薦35 推薦37視頻文章20視頻文章30視頻文章40視頻文章50視頻文章60 視頻文章70視頻文章80視頻文章90視頻文章100視頻文章120視頻文章140 視頻2關鍵字專題關鍵字專題tag2tag3文章專題文章專題2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章專題3
問答文章1 問答文章501 問答文章1001 問答文章1501 問答文章2001 問答文章2501 問答文章3001 問答文章3501 問答文章4001 問答文章4501 問答文章5001 問答文章5501 問答文章6001 問答文章6501 問答文章7001 問答文章7501 問答文章8001 問答文章8501 問答文章9001 問答文章9501
當前位置: 首頁 - 科技 - 知識百科 - 正文

AnalyzingYourMongoDBDatawithAnalytica

來源:懂視網 責編:小采 時間:2020-11-09 13:25:04
文檔

AnalyzingYourMongoDBDatawithAnalytica

AnalyzingYourMongoDBDatawithAnalytica:This is a guest post by Nosh Petigara, president of Analytica Analytica is an analytics platform that makes it easy to analyze and report on data like user profiles, event logs, product catalogs, user-generated content, financial assets,
推薦度:
導讀AnalyzingYourMongoDBDatawithAnalytica:This is a guest post by Nosh Petigara, president of Analytica Analytica is an analytics platform that makes it easy to analyze and report on data like user profiles, event logs, product catalogs, user-generated content, financial assets,

SET twitter.byHashtag = group(tweets.by(entities.hashtags.text)) //group our tweets by hashtag and store them in a calculated (virtual) collection called 'byHashtag'
SET twitter.byHashtag.count = count(tweets) // counts up the number of tweets for each hashtags in our virtual collection
SET twitter.tophashtags = orderdesc(byHashtag.by(count)) //sort the results in descending order

Analytica uses dot notion to specify what collections, documents, or properties to operate on. Each SET command in Analytica results in a computation or the transformation of a set of documents, the results of which are stored in what we call calculated properties or calculated collections. These are intermediate results, stored in Analytica (at the database, collection, or document level - depending on how you specify them), which can be used in subsequent computations. Finally the command ‘twitter.tophashtags.(text, count)’ retrieves the text of the hashtags along with the count of how many tweets use that hashtag.

Since we wanted to graph out our results, we used Analytica’s plug in for Excel to enter a series of Analytica script expressions. In addition to calculating the most tweeted hashtags, we also looked at the frequency of tweets per month from the @mongodb account, analyzed the content of @mongodb’s tweets to see how hashtags and URLs were being used, and computed a few other metrics. With this quick analysis, we saw that @mongodb’s tweeting patterns have changed over time (a lot more tweets recently!), figured out that over 80% of @mongodb’s tweets are retweeted at least once, and learnt (perhaps not surprisingly!) that the most popular tweets are about new releases. We graphed out the results and generated the HTML page to share with the MongoDB community.

We’re holding a webinar with 10gen?on February 12 so that you can learn more about Analytica and ask questions. In the webinar, we’ll go through how you can use Analytica on your own data to produce in-depth analyses, dashboards and reports and become a data whiz! In the meantime you can?learn more and download the beta version of Analytica. You’ll be able to run Analytica against your own datasets or in an example we’ve put together on data from StackOverflow.

If you are looking for other datasets to try, I’d recommend checking out Twitter’s API, Foursquare’s API, the NYTimes API, or Sunlight Labs API. Each of these has JSON, CSV or XML data that you can easily import into MongoDB to start analyzing with Analytica or MongoDB’s query language and aggregation framework. We’ll also post a step-by-step guide soon, which will describe how you can run an analysis on your own twitter history. We’d love to hear from you - you can email?with questions or feedback.

  • Analytica Documentation
  • Learn more about MongoDB and Analytica in the Webinar on Data Analytics and Business Intelligence with MongoDB and Analytica February 12 ?
  • Follow Analytica on Twitter
  • 聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com

    文檔

    AnalyzingYourMongoDBDatawithAnalytica

    AnalyzingYourMongoDBDatawithAnalytica:This is a guest post by Nosh Petigara, president of Analytica Analytica is an analytics platform that makes it easy to analyze and report on data like user profiles, event logs, product catalogs, user-generated content, financial assets,
    推薦度:
    標簽: wi your data
    • 熱門焦點

    最新推薦

    猜你喜歡

    熱門推薦

    專題
    Top
    主站蜘蛛池模板: 亚洲视频免费观看 | 亚洲国产精品成人综合久久久 | 91久久精品国产亚洲 | 91午夜精品亚洲一区二区三区 | 亚洲一区二区三区夜色 | 国产区二区 | 特级全黄一级毛片视频 | 中文字幕无线码一区 | 国产在线视频在线观看 | 久久免费福利视频 | 亚洲国产精品一区二区久 | 久久大香香蕉国产免费网vrr | 欧美一区二区三区视视频 | 可以免费观看一级毛片黄a 另类区 | 国产精品乱码一区二区三区 | 欧美在线视频网站 | 青青国产成人久久91网 | 欧美精品一区二区三区视频 | 欧美激情亚洲图片 | 国产综合一区二区 | 在线亚洲欧美日韩 | 国产精品久久久 | 亚洲国产精品热久久2022 | 青青成人福利国产在线视频 | 久久亚洲一级α片 | 亚洲欧美日韩高清一区二区一 | 日韩经典在线 | 一区二区网站 | 明星国产欧美日韩在线观看 | 国产欧美久久一区二区 | 国产高清一区二区三区 | 精品久久一区二区 | 国产手机在线αⅴ片无码观看 | 99热免费| 亚洲午夜久久久久久91 | 国产资源在线看 | 欧美地区一二三 | 亚洲图欧美 | 毛片一级免费 | 鸣人x钢手 | 久草福利社|