均勻壓縮法
這種方法利用了數學中的均勻壓縮原理將圓進行均勻壓縮為橢圓,理論上為能夠得到標準的橢圓.下面的代碼會出現線寬不一致的問題,解決辦法看5樓simonleung的評論。
代碼如下:
//------------均勻壓縮法繪制橢圓--------------------
//其方法是用arc方法繪制圓,結合scale進行
//橫軸或縱軸方向縮放(均勻壓縮)
//這種方法繪制的橢圓的邊離長軸端越近越粗,長軸端點的線寬是正常值
//邊離短軸越近、橢圓越扁越細,甚至產生間斷,這是scale導致的結果
//這種缺點某些時候是優點,比如在表現環的立體效果(行星光環)時
//對于參數a或b為0的情況,這種方法不適用
function EvenCompEllipse(context, x, y, a, b)
{
context.save();
//選擇a、b中的較大者作為arc方法的半徑參數
var r = (a > b) ? a : b;
var ratioX = a / r; //橫軸縮放比率
var ratioY = b / r; //縱軸縮放比率
context.scale(ratioX, ratioY); //進行縮放(均勻壓縮)
context.beginPath();
//從橢圓的左端點開始逆時針繪制
context.moveTo((x + a) / ratioX, y / ratioY);
context.arc(x / ratioX, y / ratioY, r, 0, 2 * Math.PI);
context.closePath();
context.stroke();
context.restore();
};
三次貝塞爾曲線法一
三次貝塞爾曲線繪制橢圓在實際繪制時是一種近似,在理論上也是一種近似。 但因為其效率較高,在計算機矢量圖形學中,常用于繪制橢圓,但是具體的理論我不是很清楚。 近似程度在于兩個控制點位置的選取。這種方法的控制點位置是我自己試驗得出,精度還可以.
代碼如下:
//---------使用三次貝塞爾曲線模擬橢圓1---------------------
//此方法也會產生當lineWidth較寬,橢圓較扁時,
//長軸端較尖銳,不平滑的現象
function BezierEllipse1(context, x, y, a, b)
{
//關鍵是bezierCurveTo中兩個控制點的設置
//0.5和0.6是兩個關鍵系數(在本函數中為試驗而得)
var ox = 0.5 * a,
oy = 0.6 * b;
context.save();
context.translate(x, y);
context.beginPath();
//從橢圓縱軸下端開始逆時針方向繪制
context.moveTo(0, b);
context.bezierCurveTo(ox, b, a, oy, a, 0);
context.bezierCurveTo(a, -oy, ox, -b, 0, -b);
context.bezierCurveTo(-ox, -b, -a, -oy, -a, 0);
context.bezierCurveTo(-a, oy, -ox, b, 0, b);
context.closePath();
context.stroke();
context.restore();
};
三次貝塞爾曲線法二
這種方法是從StackOverFlow中一個帖子的回復中改變而來,精度較高,也是通常用來繪制橢圓的方法.
代碼如下:
//---------使用三次貝塞爾曲線模擬橢圓2---------------------
//此方法也會產生當lineWidth較寬,橢圓較扁時
//,長軸端較尖銳,不平滑的現象
//這種方法比前一個貝塞爾方法精確度高,但效率稍差
function BezierEllipse2(ctx, x, y, a, b)
{
var k = .5522848,
ox = a * k, // 水平控制點偏移量
oy = b * k; // 垂直控制點偏移量
ctx.beginPath();
//從橢圓的左端點開始順時針繪制四條三次貝塞爾曲線
ctx.moveTo(x - a, y);
ctx.bezierCurveTo(x - a, y - oy, x - ox, y - b, x, y - b);
ctx.bezierCurveTo(x + ox, y - b, x + a, y - oy, x + a, y);
ctx.bezierCurveTo(x + a, y + oy, x + ox, y + b, x, y + b);
ctx.bezierCurveTo(x - ox, y + b, x - a, y + oy, x - a, y);
ctx.closePath();
ctx.stroke();
};
光柵法
這種方法可以根據Canvas能夠操作像素的特點,利用圖形學中的基本算法來繪制橢圓。 例如中點畫橢圓算法等。
其中一個例子是園友“豆豆狗”的一篇博文“HTML5 Canvas 提高班(一) —— 光柵圖形學(1)中點畫圓算法”。這種方法由于比較“原始”,靈活性大,效率高,精度高,但要想實現一個有使用價值的繪制橢圓的函數,比較復雜。比如,要當線寬改變時,算法就復雜一些。雖然是畫圓的算法,但畫橢圓的算法與之類似,可以參考下。
Demo
下面是除光柵法之外,幾個繪制橢圓函數的演示,演示代碼如下:
代碼如下:
聲明:本網頁內容旨在傳播知識,若有侵權等問題請及時與本網聯系,我們將在第一時間刪除處理。TEL:177 7030 7066 E-MAIL:11247931@qq.com